GLUT4 vesicle dynamics in living 3T3 L1 adipocytes visualized with green-fluorescent protein.
نویسندگان
چکیده
Insulin stimulates glucose uptake into its target cells by a process which involves the translocation of the GLUT4 isoform of glucose transporter from an intracellular vesicular compartment(s) to the plasma membrane. The step(s) at which insulin acts in the vesicle trafficking pathway (e.g. vesicle movement or fusion with the plasma membrane) is not known. We expressed a green-fluorescent protein-GLUT4 (GFP-GLUT4) chimaera in 3T3 L1 adipocytes. The chimaera was expressed in vesicles located throughout the cytoplasm and also close to the plasma membrane. Insulin promoted a substantial translocation of GFP-GLUT4 to the plasma membrane. Time-lapse confocal microscopy demonstrated that the majority of GFP-GLUT4-containing vesicles in the basal state were relatively static, as if tethered (or attached) to an intracellular structure. A proportion (approx. 5%) of the vesicles spontaneously lost their tether, and were observed to move rapidly within the cell. Other vesicles appear to be tethered only on one edge and were observed in a rapid stretching motion. The data support a model in which GLUT4-containing vesicles are tightly tethered to an intracellular structure(s), and indicate that a primary site of insulin action must be to release these vesicles, allowing them to then translocate to and fuse with the plasma membrane.
منابع مشابه
Activators of AMP-activated protein kinase enhance GLUT4 translocation and its glucose transport activity in 3T3-L1 adipocytes.
To determine whether the increase in glucose uptake following AMP-activated protein kinase (AMPK) activation in adipocytes is mediated by accelerated GLUT4 translocation into plasma membrane, we constructed a chimera between GLUT4 and enhanced green fluorescent protein (GLUT4-eGFP) and transferred its cDNA into the nucleus of 3T3-L1 adipocytes. Then, the dynamics of GLUT4-eGFP translocation wer...
متن کاملRole for the microtubule cytoskeleton in GLUT4 vesicle trafficking and in the regulation of insulin-stimulated glucose uptake.
Insulin stimulates glucose uptake into adipocytes by promoting the translocation of the glucose transporter isoform 4 (GLUT4) from intracellular vesicles to the plasma membrane. In 3T3-L1 adipocytes GLUT4 resides both in an endosomal pool, together with transferrin receptors, and in a unique pool termed 'GLUT4 storage vesicles' (GSVs), which excludes endosomal proteins. The trafficking of GLUT4...
متن کاملInsulin action on GLUT4 traffic visualized in single 3T3-l1 adipocytes by using ultra-fast microscopy.
A novel imaging technology, high-speed microscopy, has been used to visualize the process of GLUT4 translocation in response to insulin in single 3T3-L1 adipocytes. A key advantage of this technology is that it requires extremely low light exposure times, allowing the quasi-continuous capture of information over 20-30 min without photobleaching or photodamage. The half-time for the accumulation...
متن کاملSites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GL...
متن کاملTrafficking of Glut4-green fluorescent protein chimaeras in 3T3-L1 adipocytes suggests distinct internalization mechanisms regulating cell surface glut4 levels.
Insulin stimulates glucose transport in adipose and muscle tissue by stimulating the movement ('translocation') of an intracellular pool of glucose transporters (the Glut4 isoform) to the plasma membrane. We have engineered a series of chimaeras between Glut4 and green fluorescent protein (GFP) from Aequoria victoria and expressed these proteins in 3T3-L1 adipocytes by microinjection of plasmid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 327 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1997